It was a great honor to recently accept the position of junior co-chair of The Gopher Tortoise Council. The GTC has been around longer than I have; I’m consequently acutely aware of the organization’s long history of working towards effective tortoise and longleaf pine conservation. As a new co-chair, I’m humbled to follow in the footsteps of so many distinguished biologists, educators, and other professionals in the Southeast.

There may be significant changes on the horizon for Gopher Tortoise conservation. The species, recently afforded greater protection in Florida, may warrant federal listing throughout its range, according the U.S. Fish and Wildlife Service. This change would have grand repercussions for the recovery of tortoises on both public and private land and the GTC will be monitoring the situation closely.

Many of us have long despaired at the extant rattlesnake roundups and worried about the message they send to younger generations. Now, thanks to a recent paper penned by Bruce Means, we have evidence suggesting Eastern Diamondback Rattlesnake populations are declining, a trend that may be related to the existence of the roundups themselves. In addition, several individuals were recently cited for gassing tortoise burrows in Silver Lake Wildlife Management Area in southern Georgia. They admitted they were there to catch rattlesnakes; we can only assume what they were planning to do with them. Armed with this knowledge, the GTC lent its support and its name to an effort spearheaded by the Center for Biological Diversity that aimed to persuade Georgia’s Attorney General to investigate the extent of burrow gassing in the state. The GTC sent its own letter urging Georgia to end unregulated harvest of rattlesnakes. We also contacted organizers of the Claxton and Whigham, Georgia, and Opp, Alabama roundups/rodeoos to offer our assistance in helping them transition to wildlife-friendly events, but our inquiries went unanswered. The GTC will continue to look for ways to engage roundup organizers.

The dates and location for our 2010 meeting have been set: October 7-10 at the 4-H Center in Columbiana, Alabama. Look for details to be announced on our website as they are finalized.

Finally, we all mourn the recent passing of a tortoise conservation pioneer, Ray Ashton. Ray was a longtime member of GTC and served as Co-chair of the Council in 1987-88. Read more about his life and work in this issue.
Tribute to Ray Ashton
by Joan Berish

On March 11th, the state of Florida lost one of its most ardent advocates for conservation of our natural resources. Ray Ashton lost his battle with pancreatic cancer, but his legacy will live on through the work of his wife Patricia and his many friends and colleagues. Ray was truly a force of nature; he could be as reassuring as a spring breeze when assisting grass-roots organizations in their local conservation efforts, and, conversely, he became a major hurricane when he felt that resource agencies were not fulfilling their responsibilities. Although he is perhaps best known in Florida for his dedicated and passionate efforts to conserve gopher tortoises, he was an incredibly knowledgeable naturalist and visionary who promoted a big picture approach to conserving and managing ecosystems.

Over the course of his long career, Ray wore many hats: professional zoologist, researcher, consultant, museum curator, ecotourism director, educator, and prolific author. His conservation work extended well beyond the borders of Florida to both national and international endeavors, and his expertise was sought by governments throughout the world. He and his wife created the Ashton Biodiversity Institute and the Gopher Tortoise Conservation Initiative to increase our knowledge about this keystone species and to empower Florida’s citizens to conserve upland habitats as well as wetlands. His accomplishments are too numerous to fully encapsulate here today—but a mighty oak of a man has fallen, and his loss will be profoundly felt by Floridians and the international conservation community.

In lieu of flowers, please send any donations to the Ashton Fund at Sun Trust Bank:

SunTrust Bank- attn. Brian Drumgool
Mail Code FL-Jonesville-0816
14220 W. Newberry Road
Jonesville, FL 32669
Zoo Atlanta Helps to Save Indigo Snakes
By Jamie Gumbrecht
The Atlanta Journal-Constitution

Someday, 37 young eastern indigo snakes that arrived at Zoo Atlanta in January will grow up. Like others of their ebony ilk, they'll be among the longest snakes in North America, non-venomous and able to chow on rattlesnakes but remain docile in human hands. Not that it will happen often — few zoo workers and no zoo visitors will ever see them.

Ed Kabay, of Zoo Atlanta, is part of a larger project to bolster eastern indigo snake populations and re-establish them in Alabama. They’re caring for the offspring of wild indigo snakes like the one shown above. Indigo snakes are among the largest snakes in North America. Zoo Atlanta is part of a larger movement to increase indigo snake populations in the Southeast and re-establish the threatened species in Conecuh National Forest, a suitably large longleaf pine habitat with gopher tortoise burrows the snakes use for shelter. Hatchlings from gravid female snakes captured in South Georgia will live in captivity till they’re large enough to carry tiny radio transmitters and avoid becoming prey themselves.

Beside the glamour on display at Zoo Atlanta, Georgia Aquarium and other animal attractions, this is just one ongoing behind-the-scenes research project. Among behavior and breeding studies, only a few deal with animals that can't go on display and won't live their lives in the care of humans. It's delicate to balance a zoo's level of care with the demands of wilderness.

"Animals that you never see — that's somewhat atypical," said Dwight Lawson, Zoo Atlanta's senior vice president of collections, education and conservation. "You want to take extra precautions that they aren't introduced to any exotic diseases and don't want them to get habituated to humans."

Some animals born or raised in Atlanta attractions have returned successfully to the wild. Golden lion tamarins from Zoo Atlanta moved to Brazil in 1994 and 1996. The Chattahoochee Nature Center in Roswell and the Tennessee Aquarium in Chattanooga raised and released nearly 20 bog turtles in North Georgia.

Five sea turtles that usually live off the coast of North Carolina are currently in Georgia Aquarium's warehouse. An abnormally frigid winter caused "catastrophic wildlife mortality," said Gregory Bossart, Georgia Aquarium's chief veterinary officer and senior vice president of veterinary services. For now, the aquarium will add to research on the effects of climate change on ocean life. If the turtles' health continues to improve, they'll be released in May.

"We’re excited an aquarium in a landlocked city is able to help," Bossart said. In each case, places known as tourist destinations are serving as laboratories. Government and nonprofit agencies might have interest, administrators and funding to save threatened species, but zoos and nature centers have the animal expertise.
“You’re strapped for cash to fund these programs, but the silver lining is that people are coming together,” said Lawson, of Zoo Atlanta. “It’s sparking new solutions to old problems.”

Conservation agencies in Alabama had long wanted to reintroduce the threatened indigo snake population to the state’s southern forests, and looked to Auburn University for help. In 2008, Auburn zoologist Jim Godwin had three female indigo snakes that produced nearly 30 hatchlings. The next year, it was eight adults and 60 offspring.

“These snakes are essentially eating machines,” Godwin said. “We really weren’t prepared for that.”

Enter Zoo Atlanta, with its animal-friendly facilities and reptile-loving staff. Brad Lock, a Zoo Atlanta veterinarian and assistant curator of herpetology, knows snakes sometimes want heat, a place to hide, a moist spot to shed. He knows to mimic the wilderness diet of an eating machine, too, with small fish, tadpoles, quail and mice of different sizes – “pinkies, fuzzies, hoppers,” he said. Later, they’ll dine on frogs, eggs, turtles and other snakes.

With a little help from humans, some snakes may be released later this year, project organizers hope. The indigos from Zoo Atlanta will get their shot at wild survival next year.

"It’s millions of years of adaptation, evolution or God’s influence. Man’s really good at copying it, but not so good at coming up with it," Lock said. "It would be a shame to lose that."

**Indigo snakes by the numbers**

5: states where eastern indigo snakes lived historically

2: states where eastern indigo snakes live currently, Georgia and Florida

37: number of indigo snakes cared for at Zoo Atlanta

18: number of indigo snakes likely to be released in Alabama this summer

2: meters, the typical length of a female indigo snake

*Source: www.proctorianne.org and staff research*
The current distribution of the Florida harvester ant in Mississippi, its suggested relationship with the distribution of the non-native fire ant, and the implications for recovery of the gopher tortoise

Reprinted from a poster presented at the Mississippi Amphibian and Reptile Conservation Meeting, MS Museum of Natural Science

The Florida harvester ant (Pogonomyrmex badius; Fig. 1) occurs on deep, well-drained sands of the southeastern coastal plain from Louisiana to North Carolina (Cole, 1968). Though often found in longleaf pine and scrub oak habitat, and in true scrub habitat in Florida, it may also occur in agricultural areas and lawns. The only member of its genus in the east, it is unique in that some members of the worker caste have extraordinarily large heads, which are used for cracking seeds. Beds are broad and relatively flat (Fig. 2), and are usually decorated about the perimeter with a ring comprised of bits of charcoal (Fig. 3); small pebbles are used too, if available. Nest tunnels and storage chambers may be 2.5-3 m deep (MacGown and Hill, 2007; MacGown et al. 2008). Florida Harvester Ant populations in Mississippi (MacGown et al., 2008), Alabama (Wilson, 1951), and populations of two related, western species of harvester ants in Texas (Cook, 2003; Henke and Fair, 1998; Porter and Savignano, 1990) have declined precipitously concurrent with invasions of the non-native fire ant (Solenopsis invicta). The Florida harvester ant is still abundant in Georgia and Florida, which have large contiguous units of excessively well-drained soils; Louisiana now supports only one population of the ant (Louisiana Natural Heritage Program, pers. comm.).

In Mississippi, this species was collected or reported from 14 counties (George, Harrison, Lowndes, Wayne, Jackson, Jones, Rankin, Forrest, Hancock, Jasper, Monroe, Perry, Pike, and Winston) prior to the invasion of S. invicta. However, it was not reported on the mainland of Mississippi (it persisted on Horn and Petit Bois Islands) after 1934 until December of 2006, when a population was discovered on a Smith County sandhill by Lucas Majure (MacGown and Hill, 2007). Its apparent disappearance at most sites was assumed to be related to fire ant infestations and to the almost statewide aerial application of Mirex to combat the latter (MacGown and Hill, 2007).

In June of 2007, while surveying two parcels of excessively well-drained soil in Lamar County for potential suitability as gopher tortoise (Gopherus polyphemus) mitigation bank sites, I found one harvester

Fig. 1 Major worker of the Florida harvester ant, Pogonomyrmex badius (Latreille). Photo by Lyle J. Buss, University of Florida.

Fig. 2. Unusually large Florida harvester ant bed.

Fig. 3. Bits of charcoal on Florida harvester ant bed.
ant mound on each, and hypothesized that harvester ants might be more widely distributed on patches of excessively well-drained soils because these soils are typically less thoroughly infiltrated by fire ants than are more mesic soils (Deyrup, pers. comm).

**Methods**

Since June of 2007, research staff of the Mississippi Museum of Natural Science (MMNS), occasionally assisted by others, have conducted presence/absence surveys for harvester ants, gopher tortoises, oldfield mice (*Peromyscus polionotus*), and other rare species on over 200 sandhills throughout southeastern Mississippi. Surveys included 22 counties, and 17 of the 19 counties in which tortoises occur. Only 12 of the sites on which harvester ants were sought were on public land, and only two of the sandhills (both private tracts) were in good condition in terms of community composition and structure. Sandhills were located with maps from a variety of sources, including one produced by Will McDearman and David Felder (subsequently modified and augmented by Matt Smith) of excessively well-drained soils throughout the range of the gopher tortoise in Mississippi; published county soil map books; maps of priority soils (excessively well-drained soils) produced by the DeSoto National Forest (DNF); and, for counties in which detailed soil maps are not or were not available, I conducted careful scrutiny of aerial imagery available from maps.live, seeking reflective patches indicative of the relatively skimpy herbaceous cover typical of excessively well-drained soils. Coordinates and activity status of all harvester ant beds, gopher tortoise burrows, and oldfield mice burrows were recorded. Gopher tortoise burrow width and height was also recorded. Burrows 22.5 cm or less in width are assumed to be occupied by juvenile or subadult tortoises. I primarily searched open patches of habitat at each sandhill surveyed, as these are most likely to yield harvester ant mounds, the principal focus of my survey. I doubtless missed some tortoises and mice in thicker cover.

In addition, during comprehensive surveys for gopher tortoises on all excessively well-drained soil units (“priority soils”) on the DNF (Bailey, 2009) surveyors were requested to look for harvester ants.

**Results**

Twenty-eight harvester ant populations (on separate and discrete sandhills) were discovered from 2007 to present (Fig. 4) including the westernmost populations discovered by Lucas in Smith County. Will McDearman discovered the northernmost Lamar County population; Scott Peyton of the MMNS found the Lauderdale and Lowndes Co. populations; Mark Bailey and his tortoise survey crews found only two populations on the DNF during their tortoise surveys on 174 excessively well-drained sandhill sites; and I found the remaining 23 harvester ant localities. These include six new county records (Lauderdale, Pearl River, Stone, Harrison, Greene, and Smith). Generally 1-3 mounds were observed per site, though the Plum Creek tortoise mitigation site just north of Richton had more than 50 (Brad Smith, pers. comm.), and the Leakesville and Lowndes County sites had 11 and eight (at least), respectively. Harvester ants occur in 11 counties, 10 of which are in the range of the tortoise, but mainland harvester ant populations within the range of the tortoise include only nine counties. The species has not been observed at Camp Shelby or within the entire Special Use Permit area by biologists conducting extensive and intensive surveys of species of special concern since 1993 (Hinderliter, pers. comm.). This area encompasses 136,000 acres, including approximately 102 discrete aggregations of gopher tortoises (Wester, 2005), which are generally found on well-drained to excessively well-drained soils.

Tortoises occurred at a large majority of the sandhills surveyed, and at 22 of the 26 harvester ant sites actually within the range of the tortoise. Juvenile and/or subadult tortoise burrows were observed at 15 of the 22 sites known to have tortoises. Harvester ants sites with gopher tortoises also had a higher percentage of sites with juvenile tortoises, 68% (15/22), than was true of DNF sites, of which only 50% of 128 sites with tortoises manifested evidence of recruitment (Bailey, 2009)
Wilson (1951) noted the scarcity of two native fire ant species and of *P. badius* in areas infested with the invasive fire ant. Harvester ants now seem to be limited to excessively well-drained soils in sandhill habitat or what was formerly sandhill habitat, though anecdotal observations indicate that they historically also occurred on well-drained soils in Mississippi (T. Lockley, pers. comm.; Don Gatlin, pers. comm.), Georgia (L. Davis, pers. comm.), and Louisiana (L. Sharp, pers. comm.) forty to seventy years earlier. Older collection records from the Mississippi State Entomological Museum and elsewhere (J. MacGown, pers. comm.) do not provide sufficient collection site resolution to address the question of a possible reduction in the soil types available to harvester ants since the arrival of the fire ant. It is speculated that fire ants may be less-effective as predators/competitors on the most drought-prone soils, which hold fewer fine particles important to the architecture of fire ant nests, and that this might correlate with the continued presence of harvester ants and with greater reproductive success of gopher tortoises on such soils. Most tortoise populations at Camp Shelby are located on well-drained soils, not excessively well-drained soil. Epperson and Heise (2003) found that the known take of hatchling and juvenile tortoises by fire ants at Camp Shelby was sufficient, given other predation sources, to prevent recruitment necessary to sustain the tortoise population.

The habitat requirements of *P. badius*, which is a predominantly herbivorous species, are nearly identical to those of the gopher tortoise. It needs deep, excessively well-drained sand (at least currently, in the age of the fire ant), with ample herbaceous vegetation and sunlight. At all but three of the recently discovered Mississippi localities, harvester ants are only present in small numbers, generally 1-3 mounds per site, and they are usually found in the center of open, disturbed areas such as...
fire lanes, maintained utility right-of-way corridors and low-usage sandy roads. One of the two known Smith County occurrences consists of one harvester ant bed (surrounded by fire ant beds) in a little used sand road. At only three sites were more than six mounds detected, though JoVonn Hill (Mississippi State Entomological Museum, pers. comm.) reports that sandhills in Georgia often have thirty or more colonies, and Tim Davis (South Carolina Extension Service, pers. comm.) has observed hundreds of mounds at individual sites in South Carolina. Only two of the collection sites were in well-managed, open longleaf stands. Most collection sites are never burned, which gradually leads to brush encroachment and shading out of herbaceous vegetation. However, it was noted that on many such sites that *Serenoa repens*, when present, does not proliferate into a problematic ground cover, which is definitely not the case at some sites on the DNF, where regular dormant season burning has probably triggered proliferation of this species, to the detriment of species reliant upon the herbaceous layer. The low frequency of harvester ant occurrences and the low recruitment success of tortoises on the DNF (Bailey, 2009) as compared with that observed on sites on private lands, many of which are under what could most charitably be described as laissez faire management, deserves closer scrutiny. Eight new Florida rosemary (*Ceratiola ericoides*) sites were discovered during this survey. This is the closest approximation to a scrub community in Mississippi, and to be maintained probably requires long-interval very hot fire. None supported harvester ants, probably because of the sparse herbaceous layer in the long absence of fire, though I have often observed harvester ants in scrub communities in southeastern Florida. All supported tortoises, and juveniles were generally in evidence.

The apparent absence of harvester ants from extreme southeastern Mississippi in Jackson, George, and much of Greene Counties is puzzling, given the much greater acreage of excessively well-drained soils present in this area. Note in particular the relatively high percentage of sandhills still occupied by harvester ants in Lamar County. The dearth of harvester ants in the counties bordering Alabama may correlate with the longer history of the fire ant invasion at these sites and/or the relatively broad chemical arsenal employed in the earlier years of the fire ant suppression effort (Calcott, pers. comm.). Most sites at which harvester ants and tortoises still occur have been significantly degraded. Threats include sand mining, fire suppression, habitat conversion to off-site pine species (generally dense stockings of loblolly pine, *Pinus taeda*), fire ant invasion, urban/suburban development, aerial application of long-acting herbicides during site preparation, indiscriminate broadcast of fire ant poisons, cogon grass invasion, over-reliance on dormant season burning, and “land farming” (addition of drilling wastes to excessively well-drained soils to improve fertility and tilth). Remaining habitat patches are highly disjunct, rendering re-colonization, which is only possible by winged, newly emergent queens after breeding swarms, highly unlikely. In Mississippi, sandhill habitat is ranked as critically imperiled.

Given that utility corridors have become de facto refugia for tortoises at many sites, I am very concerned about the growing practice of indiscriminate use of herbicides to maintain these free of woody vegetation. This was an excellent site for tortoises and harvester ants; destruction of their food plants will not improve their survival prospects.

**Conclusions**

Florida harvester ant was never eliminated from the mainland of Mississippi, but has persisted, mainly in very small numbers, on sandhill refugia less-readily invaded by fire ants. It is suggested that *S. invicta* are less-effective predators/competitors on excessively well-drained soils, and that fire ant presence is inversely correlated with the presence of harvester ants and with reproductive success of gopher tortoises on such soils. Fire ants can certainly invade such soils, particularly in areas long-protected from fire, and in which woody debris accumulates on the surface, or at sites which are thickly planted with off-site species such as loblolly pine, and again, from which fire is excluded. Where harvester ants are abundant it is likely that tortoise recruitment will be less affected by fire ant depredation, too. There are two such sites within the range of the tortoise in Mississippi. One is the Plum Creek tortoise mitigation site north of Richton, and the other is a powerline swath just northeast of Leakesville. Both manifest high recruitment of juvenile tortoises.
Acknowledgments

I thank Matt Smith for production of field maps and Fig. 1 and for his always useful computer wizardry. Scott Peyton, Mark Bailey, Rachel Wallace, Lucas Majure, Don Gatlin, and Will McDearman contributed locality information, and Will McDearman and David Felder produced the first iteration of the southeastern Mississippi priority soils map. JoVonn Hill, Joe MacGown, Tim Davis, Mark Deyrup and Tim Lockley provided information on the historic distribution of *P. badius* and were useful sounding boards for my hypothesis regarding the comparatively low fire ant infestation densities usually observed on excessively well-drained soils. Brad Smith and Kit Hart are thanked for access to Plum Creek’s sites. John Davis identified ant specimens and enthusiastically supported this project. Debora Mann is thanked for eleventh-hour assistance with preparation of this paper and for field assistance on harvester ant surveys in Florida. Heather Sullivan identified plants collected to evaluate subtleties of community composition, and frequently accompanied me on field trips. Ann Marie Calcott provided information on historical fire-ant treatment campaigns in southeastern Mississippi. Don Gatlin, Lee Sharp, Lester Davis, and Tim Lockley provided anecdotal observations from the distant past of the probable occurrence of harvester ants on well-drained soils.

Citations


Men Charged in Snake-hunting Case

By Patti Dozier (patti.dozier@gaflnews.com)
Reprinted from the Thomasville Times-Enterprise
February 17, 2010 08:34 pm
Copyright © 1999-2010 cnhi, inc.

THOMASVILLE. Four West Georgia men are charged in what a state official described as an extremely uncommon case. The men were arrested Thursday, Jan. 28, on the Silver Lake Wildlife Management Area (WMA) in south Decatur County at Lake Seminole. The suspects are charged with destroying wildlife habitat. Information about the case was released Tuesday by the Georgia Department of Natural Resources (DNR).

Arrested were Robert C. Horn, 24, Shiloh; Jesse L. Masters, 18, Columbus; David M. Masters, 59, Fortson; and James E. Warren, 58, Ellerslie. The misdemeanor cases against the men will be disposed of in State Court of Decatur County.

On Jan. 28, a DNR wildlife official learned people were possibly hunting rattlesnakes on a Silver Lake tract. As the DNR employee approached the scene, one of the men immediately placed a gasoline can in a truck. The DNR wildlife technician saw two garden hoses and snake-catching equipment at the site, an incident report shows, and the men admitted they were hunting rattlesnakes. When the technician asked the men how they were hunting the serpents, they explained the process of checking gopher tortoise burrows with a garden hose.

The reports showed the men demonstrated the technique on a nearby burrow by inserting a hose into the burrow to listen. Then if movement was detected they would insert a treble hook on a hose attempting to snag it, according to the report. The men told the technician they put gasoline in a burrow if they do not hear anything. The technician told the men they were breaking the law by putting gasoline in a den, nest or burrow to recover an animal. They also were destroying the burrow. The DNR employee did not find snakes in a search of the premises. Rick Lavender, DNR spokesman, said information about the arrests was not released until now because personnel have been away from work and/or in training. An incident report e-mailed at the time of the arrests was incomplete and erroneous and should not have been disseminated, Lavender explained. It is an extremely uncommon case, Lavender said, pointing out that snake-hunting activity is difficult to detect because of the vast wilderness in which the activity takes place. The investigation of the case did not reveal the suspects were hunting snakes to deliver to the Whigham Rattlesnake Roundup, which was two days after the arrests. Lavender said it is against Georgia law to disturb or destroy natural habitats for wildlife, with the exception of poisonous snakes. However, since the early 1990s, DNR has had a policy in regard to the law. According to the policy, it is illegal to gas gopher tortoise holes for any reason. In addition to a number of other creatures, the burrows are home to not only the state-protected gopher tortoise, but to the state- and federally protected eastern indigo snake, whose favorite food is the venomous among its kind. In addition to the gopher tortoise, Silver Lake WMA, where the arrests were made, supports 19 groups of red-cockaded woodpeckers, a significant population of Bachman’s sparrows, nesting bald eagles and many other priority species. The 8,398-acre tract has mature longleaf pine, mixed pine, hardwoods and wetlands.

Photo By Dirk J. Stevenson
Announcement

New children’s book on Gopher Tortoises Available

Information about ordering the book can be found at the following web site: www.pgw.com
Announcements

Natural History and Conservation of Florida Turtles

18th Annual Summer Workshop for Formal and Non-formal Educators
14 - 17 June 2010: Boyd Hill Nature Preserve (St. Petersburg, Florida)

Join other educators from throughout Florida as we:

- canoe and snorkel on spring-fed rivers
- watch marine turtles nesting on a central Florida beach
- explore an endangered longleaf pine ecosystem and examine gopher tortoise burrows

Workshop description and registration forms are available at:

Grants and Awards Programs

GTC is now accepting applications for the 2010 J. Larry Landers Student Research Award

The J. Larry Landers Student Research Award is a Gopher Tortoise Council competitive grant program for undergraduate and graduate college students. Proposals can address research concerning gopher tortoise biology or any other relevant aspect of upland habitat conservation and management. The amount of the award is variable, but has averaged $1,000.00 over the last few years.

The proposal should be limited to four pages in length and should include a description of the project, a concise budget, and a brief resume of the student.

This is an excellent opportunity for undergraduate and graduate students to access funding for their projects. The deadline for grant proposals each year is the 15th of September.

Please send submissions to:
Bob Herrington, PhD
Department of Biology
Georgia Southwestern State University
Americus, GA, 31709
229-931-2331; bherring@canes.gsw.edu
In late November 2009 Jessica Gonynor, a PhD student at University of Georgia, visited the property of St. Mary’s Airport, Georgia. Dr. Dawn Roellig (recent Graduate of UGA) accompanied Jess on the visit. Together they found 22 burrows before it rained. Using a special camera they were able to “scope” the burrows and found 16 tortoises. This is good news and suggests that there is a good population at this particular site. Gonynor also documented seeing two young tortoises occupying a single burrow.

Jess hopes to include the St. Mary’s tortoise population in her dissertation research. Her research is in collaboration with Warnell School of Forestry and Natural Resources and the Southeastern Cooperative Wildlife Disease Study (SCWDS). She hopes to assess the health of populations throughout Georgia and is specifically looking at populations for signs of upper respiratory tract disease.

For more information about the project, or to provide information on other tortoise populations in Georgia email Jess at gonynorj@warnell.uga.edu.

*** Join or Renew Your Membership in GTC ***

The following membership categories are available:

- Student: $15
- Regular Membership: $25
- Contributor: $40
- Corporation/Society: $50
- Sustaining: $75
- Life Membership: $300

Membership benefits include a subscription to the Gopher Tortoise Council’s newsletter, The Tortoise Burrow. Your membership contributions also support our student awards and education grants. The Gopher Tortoise Council is a nonprofit organization and all contributions are tax deductible. The easiest way to join or maintain your membership is to use the secure PayPal method provided on our web site (www.gophertortoiseCouncil.org). If you prefer to mail your payment, forms can be downloaded on the web site and sent to:

Gopher Tortoise Council

c/o Florida Museum of Natural History

P.O. Box 117800, University of Florida
Gainesville, Fl 32611
Directory of 2010 Gopher Tortoise Council Officers, Committee Chairs, and State Representatives
Please view the GTC website (below) for contact information

Co-chairs
Christian Newman
David A. Steen

Secretary
Ron Con科比

Membership Secretary
Will Knox

Treasurer
Don Stillwaugh

Newsletter Editor
Lora Smith

Website Manager
Jessica Gonynor

GTC Representative to PARC
John Jensen

Standing Committee Chairs

Nominating Committee
Joan Berish

Public Information and Education Committee
Laura Wewerka

Upland Snake Conservation Initiative
Chris Jenkins
Jayme Waldron

Research Advisory Committee
Bob Herrington

State Representatives

Alabama
Mark Bailey

Florida
Joan Berish

Georgia
Jessica Gonynor

Louisiana
Beau Gregory

Mississippi
Tom Mann

South Carolina
Vacant

The Tortoise Burrow

http://www.gophertortoisecouncil.org

The Tortoise Burrow is published in December, April and August. Deadlines for submission of announcements and articles are the 15th of the preceding month. Send materials to the editor:

Lora Smith
lora.smith@jonesctr.org

Decisions concerning publication of submitted material rest with the editor and co-chairs.

Reprint Policy: Articles, photographs or opinions that appear in The Tortoise Burrow may be reprinted with the written consent of the editor and GTC Co-chairs.

The GTC reserves the right to approve editorial changes prior to reprinting and requests that reprints credit The Tortoise Burrow, Newsletter of the Gopher Tortoise Council.

© Gopher Tortoise Council 2007